Gender-Hierarchy Particle Swarm Optimizer Based on Punishment
نویسندگان
چکیده
The paper presents a novel particle swarm optimizer (PSO), called gender-hierarchy particle swarm optimizer based on punishment (GH-PSO). In the proposed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.
منابع مشابه
An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملDamage detection of skeletal structures using particle swarm optimizer with passive congregation (PSOPC) algorithm via incomplete modal data
This paper uses a PSOPC model based non-destructive damage identification procedure using frequency and modal data. The objective function formulation for the minimization problem is based on the frequency changes. The method is demonstrated by using a cantilever beam, four-bay plane truss and two-bay two-story plane frame with different scenarios. In this study, the modal data are provided nume...
متن کاملMinimal K-Covering Set Algorithm based on Particle Swarm Optimizer
For random high density distribution in wireless sensor networks in this article have serious redundancy problems. In order to maximize the cost savings network resources for wireless sensor networks, extend the life network, this paper proposed a algorithm for the minimal k-covering set based on particle swarm optimizer. Firstly, the network monitoring area is divided into a number of grid poi...
متن کاملParticle Swarm Optimizer with Time-Varying Parameters based on a Novel Operator
This paper proposes a time-varying particle swarm optimizer based on our earlier work which introduces a novel operator (leap operator). Two new parameters are recommended in leap operator to prevent premature convergence. With these two parameters, a new modification named LPSO is constructed. Since the values of the 2 parameters are not easy to determine, in this paper, they are modified as t...
متن کاملA Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures
This paper presents a particle swarm ant colony optimization for design of truss structures. The algorithm is based on the particle swarm optimizer with passive congregation and ant colony optimization. The particle swarm ant colony optimization applies the particle swarm optimizer with passive congregation for global optimization and ant colony approach is employed to update positions of parti...
متن کامل